CONVECTIVE INSTABILITY OF A SYSTEM OF HORIZONTAL LAYERS OF SLIGHTLY COMPRESSIBLE LIQUIDS

V. K. Andreev and V. B. Bekezhanova

UDC 532.51.013.4:536.25

Abstract

The convective stability of a system of two immiscible liquids with close densities is studied. The densities of the liquids depend nonlinearly on temperature and pressure. It is shown that the state of mechanical equilibrium is unstable. Neutral curves are plotted, and the critical values of the Rayleigh number are found. The calculations are performed for physical parameters characteristic of various northern, central, and southern zones of lake Baikal.

Key words: instability, interface, neutral curve.

Introduction. One of the main conditions for deep-water renewal is water temperature and density stratifications. For deep water bodies (of depth more than 200 m), it is necessary to allow for the compressibility of water. A feature of lake Baikal, in addition to its depths (a maximum depth of 1637 m ; an average depth of 730 m), is a decrease in the maximum density temperature with increasing depth. This effect is responsible for the mesothermal temperature maximum and is an important factor in the analysis of transfer processes in the lake due to density stratification [1].

According to experimental data [1, 2], the temperature profile of lake Baikal water is nonlinear. In the present study, the coordinate of the salient point of the temperature profile is treated as the coordinate of the interface between two immiscible liquids. In this case, the nonlinear temperature profile is approximated by two linear functions which are exact solutions of the energy equation for each of the liquid regions. This interpretation of the interface taking into account the nonlinear temperature and pressure dependence of the density with small coefficients of thermal expansion and isothermal compressibility allows the liquid layers to be to considered slightly compressible media [3].

1. Formulation of the Problem. We consider gravitational thermal convection in a system of two immiscible liquids with a common interface which are bounded from below by a solid wall and from above by a free surface (Fig. 1). The x and y axes are in the plane of the lower boundary of the layer, and the z axis is directed upward. The point $z=0$ corresponds to the lower boundary of the layer (solid wall), $z=z_{*}$ to the interface, and $z=l$ to the free surface. The value of z_{*} is determined from experimental data [2] as the salient point in the temperature distribution (for months with a mesothermal temperature distribution, z_{*} is the mesothermal maximum point). The surfaces Γ_{t}^{1} and Γ_{t}^{2} are given by the equations $f_{1,2}(\boldsymbol{x}, t)=0$, where $\boldsymbol{x}=(x, y, z)$; in particular, for the case considered below, $f_{1}=z-z_{*}$ and $f_{2}=z-l$. The density ρ_{j} is expressed as

$$
\begin{equation*}
\rho_{j}=\rho_{0}\left(1-\beta_{j}\left(\theta_{j}-\theta_{* j}\right)^{2}\right) \tag{1}
\end{equation*}
$$

Here ρ_{0} is the maximum density reached at the temperature θ_{0} called the inversion temperature or the temperature of the thermal-expansion anomaly of the liquid, β_{j} is the thermal-expansion coefficient, θ_{j} is the temperature, $\theta_{* j}=\theta_{0}\left(1-\delta_{0} p_{j}\right), p_{j}$ is the pressure, and ρ_{0}, θ_{0}, and δ_{0} are positive constants; the subscript $j=1$ refers to the lower liquid layer and the subscript $j=2$ refers to the upper liquid layer. For water, the characteristic value is $\rho_{0}=999.972 \mathrm{~kg} / \mathrm{m}^{3}$, the inversion temperature is $\theta_{0}=3.98^{\circ} \mathrm{C}$, and $\delta_{0}=5 \cdot 10^{-8} \mathrm{~Pa}^{-1}$.

[^0]

Fig. 1. Flow diagram: Γ_{t}^{1} is the interface and Γ_{t}^{2} is the free surface.

Equation (1) is a simplified version of the equation of state

$$
\rho(\theta, p)=\rho_{m}(p)\left[1-\varphi(p)\left(\theta-\theta_{m}(p)\right)^{2}\right]
$$

The form of the functions $\rho_{m}(p), \varphi(p)$, and $\theta_{m}(p)$ and a justification of the choice of this equation of state are indicated in [4]. Instead of the functions $\rho_{m}(p)$ and $\theta_{m}(p)$, relation (1) contains the zero terms of the Taylor series expansion ρ_{0} and θ_{0}, respectively. The constant δ_{0} is determined from the expression for $\theta_{m}(p)$. For the specified values of the physical parameters (for lake Baikal water), the error in determining the density by Eq. (1) is less than 1%.

In the modeling for lake Baikal, instead of a homogeneous liquid layer we analyze a system of two different liquids with close physical characteristics (temperature, density, etc.) which correspond to experimental data. The approach employed in the present study takes into account the seasonal stability features of Baikal water due to the vertical temperature distribution [1].

For each region Ω_{j}, the Oberbeck-Boussinesq system of equations is valid:

$$
\begin{gather*}
\operatorname{div} \boldsymbol{v}_{j}=0, \quad \frac{\partial \theta_{j}}{\partial t}+\boldsymbol{v}_{j} \cdot \nabla \theta_{j}=\chi_{j} \Delta \theta_{j} \\
\rho_{0}\left(\frac{\partial \boldsymbol{v}_{j}}{\partial t}+\boldsymbol{v}_{j} \nabla \boldsymbol{v}_{j}\right)=-\nabla p_{j}+\mu_{j} \Delta \boldsymbol{v}_{j}+\rho_{j} \boldsymbol{g} . \tag{2}
\end{gather*}
$$

Here $\boldsymbol{v}_{j}=\left(u_{j}, v_{j}, w_{j}\right)$ is the velocity of the j th liquid, χ_{j} is the thermal diffusivity, μ_{j} is the viscosity, and $\boldsymbol{g}=(0,0,-g)$, where g is the acceleration due to gravity.

At the solid wall, the temperature and attachment conditions are imposed:

$$
\begin{equation*}
\theta_{1}=\Theta_{1}, \quad \boldsymbol{v}_{1}=0 \quad \text { at } \quad z=0 \tag{3}
\end{equation*}
$$

The boundary conditions are as follows:

- at the interface Γ_{t}^{1},

$$
\begin{gather*}
\boldsymbol{v}_{1}=\boldsymbol{v}_{2}, \quad \theta_{1}=\theta_{2}, \quad \mathcal{P}_{1} \boldsymbol{n}=\mathcal{P}_{2} \boldsymbol{n}, \\
\boldsymbol{v}_{1} \cdot \boldsymbol{n}=V_{n}^{1}, \quad k_{1} \frac{\partial \theta_{1}}{\partial \boldsymbol{n}}=k_{2} \frac{\partial \theta_{2}}{\partial \boldsymbol{n}} \quad \text { at } \quad z=z_{*} \tag{4}
\end{gather*}
$$

— at the free surface Γ_{t}^{2},

$$
\begin{gather*}
\boldsymbol{v}_{2} \cdot \boldsymbol{n}=V_{n}^{2}, \quad \mathcal{P}_{2} \cdot \boldsymbol{n}+p_{g} \cdot \boldsymbol{n}=0 \\
k_{2} \frac{\partial \theta_{2}}{\partial \boldsymbol{n}}+b\left(\theta_{2}-\theta_{g}\right)=Q \quad \text { at } \quad z=l . \tag{5}
\end{gather*}
$$

Fig. 2. Distribution of the equilibrium temperature θ_{j}^{e} in the liquid layers.

Here \boldsymbol{n} is the normal to the surface $\Gamma_{t}^{j}, V_{n}^{j}$ is the velocity Γ_{t}^{j} in the normal direction, $\mathcal{P}_{j}=-p_{j}+2 \mu_{j} D_{j}$ is the stress tensor in the liquid, D_{j} is the strain rate tensor of the vector field $\boldsymbol{v}_{j}, p_{g}$ is the gas pressure, k_{j} is the thermal conductivity of the liquid, b is the interphase heat transfer coefficient, θ_{g} is the gas temperature, and Q is the specified heat flux through the free surface.
2. Equilibrium State. In the state of mechanical equilibrium, $\boldsymbol{v}_{j}^{e}=0$ and the time derivatives are equal to zero: $\theta_{j t}^{e}=p_{j t}^{e}=0$. The energy equation implies that θ_{j}^{e} are linear functions z of the form

$$
\begin{equation*}
\theta_{j}^{e}(z)=A_{j} z+B_{j} \tag{6}
\end{equation*}
$$

where the constants A_{1} and B_{1} are determined from the boundary conditions at the interface and the solid wall, respectively:

$$
A_{1}=k_{2} A_{2} / k_{1}, \quad B_{1}=\Theta_{1}
$$

and the constants A_{2} and B_{2} are found from the conditions at the free surface and the interface, respectively:

$$
A_{2}=\frac{Q-b B_{2}+b \theta_{g}}{k_{2}+b l}, \quad B_{2}=\frac{\Theta_{1}\left(k_{2}+b l\right)+\left(Q+b \theta_{g}\right) z_{*}\left(k_{2} / k_{1}-1\right)}{k_{2}+b l+b z_{*}\left(k_{2} / k_{1}-1\right)}
$$

This temperature distribution in the layers (Fig. 2) is in good agreement with data of full-scale observations at lake Baikal [2, 5]. (In Fig. 2, Θ_{b} is the free-surface temperature.) The complex temperature profile is approximated by two straight lines $\theta_{1}^{e}(z)$ and $\theta_{2}^{e}(z)$ in the regions Ω_{1} and Ω_{2}, respectively.

From the momentum equation, we determine the pressure

$$
p_{1}^{e}=\frac{1}{\sqrt{\left|C_{1}\right|}} \frac{C_{3} H(z)-1}{C_{3} H(z)+1}-D z-E-\rho_{0} g z
$$

where

$$
\begin{gathered}
C_{1}=\frac{C}{D}, \quad C=\rho_{0} g \alpha \theta_{0}^{2} \delta_{0}^{2}, \quad D=\frac{A_{1}-\theta_{0} \delta_{0} \rho_{0} g}{\theta_{0} \delta_{0}}, \quad H(z)=\exp \left(2 \sqrt{\left|C_{1}\right|}(D z+E)\right) \\
E=\frac{B_{1}-\theta_{0}}{\theta_{0} \delta_{0}}, \quad C_{3}=\frac{1+\sqrt{\left|C_{1}\right|} G}{H\left(z_{*}\right)\left(1-\sqrt{\left|C_{1}\right|} G\right)}, \quad G=p_{2}\left(z_{*}\right)+D z_{*}+E+\rho_{0} g z_{*}
\end{gathered}
$$

and pressure

$$
p_{2}^{e}=\frac{1}{\sqrt{\left|C_{4}\right|}} \frac{C_{5} H_{2}(z)-1}{C_{5} H_{2}(z)+1}-D_{2} z-E_{2}-\rho_{0} g z
$$

where

$$
\begin{gathered}
C_{4}=\frac{C_{2}}{D_{2}}, \quad C_{2}=\rho_{0} g \alpha \theta_{0}^{2} \delta_{0}^{2}, \quad D_{2}=\frac{A_{2}-\theta_{0} \delta_{0} \rho_{0} g}{\theta_{0} \delta_{0}}, \quad H_{2}(z)=\exp \left(2 \sqrt{\left|C_{4}\right|}\left(D_{2} z+E_{2}\right)\right), \\
E_{2}=\frac{B_{2}-\theta_{0}}{\theta_{0} \delta_{0}}, \quad C_{5}=\frac{1+\sqrt{\left|C_{4}\right|} G_{2}}{H_{2}(l)\left(1-\sqrt{\left|C_{4}\right|} G_{2}\right)}, \quad G_{2}=p_{g}+D_{2} l+E_{2}+\rho_{0} g l .
\end{gathered}
$$

The profiles of p_{j}^{e} are convex downward and are nearly linear.
Thus, we obtained a steady-state solution $p_{j}^{e}, \theta_{j}^{e}$ of the boundary-value problems (2)-(5) that corresponds to the state of mechanical equilibrium $\boldsymbol{v}_{j}^{e}=0$.
3. Problem of Small Perturbations of Equilibrium. We formulate the problem of the stability of mechanical equilibrium against small perturbations. For this, we introduce the determining dimensionless parameters. The width l_{*} of the lower layer will be used as the characteristic length scale, the difference $\Theta=\theta_{1}-\theta_{0}$ as the temperature scale, and the velocity of convective rise of a heated fluid particle $v_{*}=\sqrt{g l_{*} \beta \Theta^{2}}$ as the velocity scale. For the density and pressure, we will use the scales ρ_{0} and $\rho_{0} v_{*}^{2}$, respectively. The temperature will be reckoned from the temperature of the lower boundary Θ_{1}, and the pressure from the hydrostatic pressure.

We introduce dimensionless variables $\boldsymbol{\xi}=(\xi, \eta, \zeta), \tau$ such that

$$
\begin{gathered}
\boldsymbol{x}=(x, y, z)=\boldsymbol{\xi} l_{*}, \quad t=\frac{l_{*}}{v_{*}} \tau, \quad l_{*}=\frac{l}{\lambda}, \quad \lambda=\frac{\Theta_{1}-\Theta_{b}}{\Theta} \\
p_{j}=\rho_{0} v_{*}^{2} p_{j}^{\prime}, \quad \boldsymbol{v}_{j}=v_{*} \boldsymbol{v}_{j}^{\prime}, \quad \theta_{j}=\Theta \theta_{j}^{\prime} .
\end{gathered}
$$

Here λ is the inversion parameter, Θ_{b} is the free-surface temperature calculated by formula (6) with constant A_{2} and B_{2}, and $p_{j}^{\prime}, v_{j}^{\prime}$, and θ_{j}^{\prime} are dimensionless functions of the pressure, velocity, and temperature, respectively.

As the scales for the coefficients ν, χ, and β and the equilibrium temperature gradients A we use their mean arithmetic values

$$
\nu_{*}=\frac{\nu_{1}+\nu_{2}}{2}, \quad \chi_{*}=\frac{\chi_{1}+\chi_{2}}{2}, \quad \beta_{*}=\frac{\beta_{1}+\beta_{2}}{2}, \quad A_{*}=\frac{A_{1}+A_{2}}{2} .
$$

Problem (2)-(5) is determined by the following dimensionless parameters: $\varepsilon=\beta \Theta^{2}, \varepsilon_{T}=\left(\theta_{0} \delta_{0} \rho_{0} v_{*}^{2}\right) / \Theta, \mathrm{R}=$ $2 /\left(\mu_{*} \delta_{*}\right)$ is the Rayleigh number, $\mu_{*}=\nu_{*} /\left(l_{*} v_{*}\right)$ is the kinematic viscosity parameter (the reciprocal of the Reynolds number), and $\delta_{*}=\chi_{*} /\left(l_{*} v_{*}\right)$ is the Fourier number.

Let $\boldsymbol{v}_{d j}(\boldsymbol{\xi}, \tau)=\boldsymbol{v}_{j}(\boldsymbol{\xi}, \tau)+\delta_{*} \boldsymbol{V}_{j}(\boldsymbol{\xi}, \tau), p_{d j}(\boldsymbol{\xi}, \tau)=p_{j}(\boldsymbol{\xi}, \tau)+\mu_{*} \delta_{*} P_{j}(\boldsymbol{\xi}, \tau)$, and $\theta_{d j}(\boldsymbol{\xi}, \tau)=\theta_{j}(\boldsymbol{\xi}, \tau)+T_{j}(\boldsymbol{\xi}, \tau)$, where $\boldsymbol{V}_{j}=\left(U_{j}, V_{j}, W_{j}\right), P_{j}$ and T_{j} are the perturbations, and $\boldsymbol{v}_{j}, p_{j}, \theta_{j}$ is the main solution. The form of the functions $\boldsymbol{v}_{d}, p_{d}$, and θ_{d} describing the perturbed motion is chosen to simplify the subsequent transformations. Linearizing the total problem, for the velocity, temperature, and pressure perturbations in each of the liquids, we obtain the following boundary-value problem:

$$
\begin{gather*}
U_{j \xi}+V_{j \eta}+W_{j \zeta}=0, \quad T_{j \tau}+\delta_{*} h_{1} W_{j}=\delta_{*} \Delta T_{j}, \\
U_{j \tau} / \mu_{*}=-P_{j \xi}+\Delta U_{j}, \quad V_{j \tau} / \mu_{*}=-P_{j \eta}+\Delta V_{j} \tag{7}\\
W_{j \tau} / \mu_{*}=-P_{j \zeta}+\Delta W_{j}+\mathrm{R}\left(\theta_{j}-\gamma+\varepsilon_{T} p_{j}\right) T_{j}+2\left(\theta_{j}-\gamma+\varepsilon_{T} p_{j}\right) \varepsilon_{T} P_{j}
\end{gather*}
$$

$\left(h_{1}=A_{*} l_{*} / \Theta\right.$ and $\left.\gamma=\theta_{0} / \Theta\right)$.
The boundary conditions are as follows:

- at the solid wall,

$$
\begin{equation*}
\zeta=0: \quad U_{1}=V_{1}=W_{1}=0, \quad T_{1}=0 \tag{8}
\end{equation*}
$$

- at the interface,

$$
\begin{gather*}
\zeta=1: \quad U_{1}=U_{2}, \quad V_{1}=V_{2}, \quad W_{1}=W_{2}, \quad T_{1}=T_{2}, \quad T_{1 \zeta}=k T_{2 \zeta} \\
U_{1 \zeta}+W_{1 \xi}=U_{2 \zeta}+W_{2 \xi}, \quad V_{1 \zeta}+W_{1 \eta}=V_{2 \zeta}+W_{2 \eta}=0 \tag{9}\\
P_{1}-P_{2}+2\left(\rho_{2}-\rho_{1}\right)\left(\nu_{2}-\nu_{1}\right)\left(W_{2 \zeta}-W_{1 \zeta}\right)=\left[p_{2 \zeta}-p_{1 \zeta}-\left(\rho_{2}-\rho_{1}\right) / \varepsilon\right] R_{1} \mathrm{R} / 2
\end{gather*}
$$

Here $k=k_{2} / k_{1}, \rho_{j}$, and ν_{j} are the dimensionless relative values of the thermal conductivity, density, and kinematic viscosity, respectively, and $R_{1}=R_{1}(\xi, \eta, \tau)$ is the local deviation of the interface from its unperturbed state along the normal.

The conditions on the free boundary are written as

$$
\begin{gather*}
\zeta=\lambda: \quad-R_{2 \tau}+\delta_{*} W_{2}=0, \quad U_{2 \zeta}+W_{2 \xi}=0, \quad V_{2 \zeta}+W_{2 \eta}=0 \\
-\mu_{*} \delta_{*} P_{2}+2 \mu_{*} \delta_{*} W_{2 \zeta}=h_{2} R_{2}, \quad \Theta_{2 \zeta}+\operatorname{Bi}\left(T_{2}+h_{1} R_{2}\right)=0 \tag{10}
\end{gather*}
$$

where $h_{2}=\partial p_{2} / \partial \zeta, R_{2}=R_{2}(\xi, \eta, \tau)$ is the perturbation of the free boundary, and $\mathrm{Bi}=b l_{*} / k_{2}$ is the Biot number. 482

Let us consider normal perturbations proportional to $\exp \left[i\left(\alpha_{1} \xi+\alpha_{2} \eta-C t\right)\right]$, where $C=C_{r}+i C_{i}$ is the complex decrement and α_{1} and α_{2} are the wavenumbers along the x and y axes, respectively. For the amplitudes of the normal perturbations, we obtain a spectral boundary-value problem to which the Squire transformation $Z_{j}=i \alpha_{1} U_{j}+i \alpha_{2} V_{j}$ applies. After the transformation, system (7) is written as

$$
\begin{gather*}
Z_{j}+W_{j}^{\prime}=0, \quad-i C T_{j}+\delta_{*} h_{1} W_{j}=\delta_{*}\left(T_{j}^{\prime \prime}-\alpha^{2} T_{j}\right) \\
-i C Z_{j} / \mu_{*}=\alpha^{2} P_{j}+Z_{j}^{\prime \prime}-\alpha^{2} Z_{j} \tag{11}\\
-i C W_{j} / \mu_{*}=-P_{j}^{\prime}+W_{j}^{\prime \prime}-\alpha^{2} W_{j}+\mathrm{R}\left(\theta_{j}-\gamma+\varepsilon_{T} p_{j}\right) T_{j}+2 \varepsilon_{T}\left(\theta_{j}-\gamma+\varepsilon_{T} p_{j}\right) P_{j}
\end{gather*}
$$

($\alpha^{2}=\alpha_{1}^{2}+\alpha_{2}^{2}$ is a modified wavenumber).
Boundary conditions (8)-(10) become

$$
\begin{gather*}
\zeta=0: \quad Z_{1}=0, \quad W_{1}=0, \quad T_{1}=0 \\
\zeta=1: \quad Z_{1}=Z_{2}, \quad W_{1}=W_{2}, \quad T_{1}=T_{2}, \quad R_{1}=i W_{1} / C \\
P_{1}-P_{2}+2\left(\rho_{2}-\rho_{1}\right)\left(\nu_{2}-\nu_{1}\right)\left(W_{2}^{\prime}-W_{1}^{\prime}\right)=\left[p_{2}^{\prime}-p_{1}^{\prime}-\left(\rho_{2}-\rho_{1}\right) / \varepsilon\right] R_{1} \mathrm{R} / 2 \\
Z_{2}^{\prime}-\alpha^{2} W_{2}=Z_{1}^{\prime}-\alpha^{2} W_{1}, \quad T_{2}^{\prime}=k T_{1}^{\prime} \tag{12}\\
\zeta=\lambda: \quad-P_{2}+2 W_{2}^{\prime}=\frac{\mathrm{R}}{2} h_{2} \frac{i \delta_{*}}{C} W_{2}, \quad Z_{2}^{\prime}-\alpha^{2} W_{2}=0, \quad T_{2}^{\prime}+\operatorname{Bi}\left(T_{2}+h_{1} \frac{i \delta_{*}}{C} W_{2}\right)=0
\end{gather*}
$$

The boundary-value problem (11), (12) is an eigenvalue problem for the complex decrement C. In order that the equilibrium state $p_{j}^{e}, \theta_{j}^{e}$ be stable against small perturbations of the specified form, it is necessary and sufficient that the imaginary part C of all eigenvalues C_{i} be negative.
4. Long-Wave Asymptotics. The unknown functions $Z_{j}, W_{j}, P_{j}, T_{j}$, and C are represented as follows (as $\alpha \rightarrow 0$):

$$
\left(Z_{j}, W_{j}, P_{j}, T_{j}, C\right)=\left(Z_{j 0}, W_{j 0}, P_{j 0}, T_{j 0}, C_{0}\right)+\alpha\left(Z_{j 1}, W_{j 1}, P_{j 1}, T_{j 1}, C_{1}\right)+\ldots
$$

Substituting the indicated expansion into system (11), we write the obtained equations in the zero approximation

$$
\begin{equation*}
Z_{j 0}^{\prime \prime}=-i C_{0} Z_{j 0} / \mu_{*} \tag{13}
\end{equation*}
$$

with the boundary conditions

$$
\begin{gather*}
Z_{10}=0 \quad \text { at } \quad \zeta=0, \quad Z_{20}^{\prime}=0 \quad \text { at } \quad \zeta=\lambda \\
Z_{10}=Z_{20}, \quad Z_{10}^{\prime}=Z_{20}^{\prime} \quad \text { at } \quad \zeta=1 \tag{14}
\end{gather*}
$$

Multiplying each of Eqs. (13) into the complex conjugate quantity $Z_{j 0}^{*}$, integrating over the segment $[0,1]$ for $j=1$ and over the segment $[1, \lambda]$ for $j=2$, and summing the resulting equations, we have

$$
\int_{0}^{1}\left|Z_{10}^{\prime}\right|^{2} d \zeta+\int_{1}^{\lambda}\left|Z_{20}^{\prime}\right|^{2} d \zeta=\frac{i C_{0}}{\mu_{*}}\left(\int_{0}^{1}\left|Z_{10}\right|^{2} d \zeta+\int_{1}^{\lambda}\left|Z_{20}\right|^{2} d \zeta\right)
$$

From this it follows that $i C_{0} / \mu_{*}>0$. Because $\mu_{*}>0$, it follows that $i C_{0}>0$. Therefore, $C_{0}=i C_{i}$ is a purely imaginary number and $C_{i}<0$. This implies that long-wave perturbations damp monotonically.

Let us specify the form of C_{0}. We denote $i C_{0} / \mu_{*}=\mu$. Then, Eq. (13) can be written as

$$
Z_{j 0}^{\prime \prime}+\mu Z_{j 0}=0
$$

Because $\mu>0$, it follows that $Z_{j 0}=c_{j 1} \cos \sqrt{\mu} \zeta+c_{j 2} \sin \sqrt{\mu} \zeta$. In the last expression, the constants $c_{j 1}$ and $c_{j 2}$ are determined from boundary conditions (14). In this case, $c_{11}=0, \mu=(\pi n+\pi / 2)^{2} / \lambda^{2}$ (n is a natural number), and

$$
\begin{equation*}
C_{0}=-i \mu_{*}(\pi n+\pi / 2) / \lambda^{2} \tag{15}
\end{equation*}
$$

Fig. 3

Fig. 4

Fig. 3. Complex decrements $C_{i}(\alpha)$ calculated for medium depths: 1) northern zone of lake Baikal ($\alpha_{*}=3.91, l_{*}=339 \mathrm{~m}$, and $\mathrm{Bi}=0.54$); 2) southern zone ($\alpha_{*}=9.01, l_{*}=610 \mathrm{~m}$, and $\mathrm{Bi}=0.76$); 3) central zone ($\alpha_{*}=16.6, l_{*}=553 \mathrm{~m}$, and $\mathrm{Bi}=0.98$).

Fig. 4. Complex decrements $C_{i}(\alpha)$ calculated for the maximum depths: 1) northern zone of lake Baikal ($\alpha_{*}=12.3, l_{*}=765 \mathrm{~m}$, and $\mathrm{Bi}=1.23$); 2) southern zone ($\alpha_{*}=26.94, l_{*}=1243 \mathrm{~m}$, and $\mathrm{Bi}=1.54$); $3)$ central zone ($\alpha_{*}=38.61, l_{*}=1387 \mathrm{~m}$, and $\mathrm{Bi}=2.47$).
5. Numerical Solution. The spectral problem (11), (12) is solved by an orthogonalization method [6]. To find the eigenvalue C, it is necessary to know the initial approximation C_{0}, which is chosen from condition (15).

We analyzed the stability of a system of horizontal layers of slightly compressible liquids with a common interface for the following parameter values: $\theta_{g}=287 \mathrm{~K}, p_{g}=101,300 \mathrm{~Pa}, \nu_{*}=1.57 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}, \chi_{*}=$ $1.323 \cdot 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}, \beta_{1}=8.41 \cdot 10^{-6} \mathrm{~K}^{-2}, \beta_{2}=8.73 \cdot 10^{-6} \mathrm{~K}^{-2}, k_{1}=0.556 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$, and $k_{2}=0.562 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$. These values correspond to the parameter values for lake Baikal water. For the indicated values of the physical parameters, we obtained the dependence of $C_{i}=\operatorname{Im} C$ on the wavenumber α.

The calculations were performed for the medium and maximum depths l of the southern, central, and northern zones of lake Baikal. The heat fluxes Q characteristic of these zones were taken into account. Figures 3 and 4 show curves of $C_{i}(\alpha)$ for the medium and maximum depths, respectively, in the southern, central, and northern zones of lake Baikal (α_{*} are the critical wavenumbers). The medium depth l is 810 m in the southern zone, 803 m in the central zone, and 564 m in the northern zone. The maximum depth is 1443 m in the southern zone of lake Baikal, 1637 m in the central zone, and 990 m in the northern zone. The obtained values of α_{*} correspond to the following dimensional values of the critical wavelength $\lambda=2 \pi / \alpha_{*}$: for the northern zone of lake Baikal, $\lambda_{1}=544.5 \mathrm{~m}$ for the medium depths and $\lambda_{2}=390.6 \mathrm{~m}$ for the maximum depths: for the central zone, $\lambda_{1}=209.01 \mathrm{~m}$ and $\lambda_{2}=225.6 \mathrm{~m}$, respectively, and for the southern zone, $\lambda_{1}=425.2 \mathrm{~m}$ and $\lambda_{2}=289.76 \mathrm{~m}$, respectively. An analysis of the results suggests that the heat transfer has a stabilizing effect on the stability of equilibrium.

Calculations were also conducted for the case of identical thermal-expansion coefficients β_{1} and β_{2}. The difference between the results obtained for this case and the results obtained in the present work for $\beta_{1} \neq \beta_{2}$ is about 10^{-11} for values of $C_{i}(\alpha)$ and about 10^{-2} for values of $\mathrm{R}(\alpha)$.

The stability boundary is determined from the relation $C_{i}(\mathrm{R})=0$. Neutral perturbations correspond to the case $C_{i}=0$. Setting $C=0$ in problem (11), (12), we obtain the neutral stability curves. In the calculations, the

Fig. 5. Neutral curves of $\mathrm{R}(\alpha): 1) \mathrm{Bi}=0.2, \mathrm{R}_{*}=3111.24$, and $\alpha_{*}=1.21$; 2) $\mathrm{Bi}=1, \mathrm{R}_{*}=3771.2$, and $\alpha_{*}=1.8$; 3) $\mathrm{Bi}=2$, $\mathrm{R}_{*}=4266.17$, and $\alpha_{*}=2.1$.
values of the Biot number was varied and the value of l was set equal to 1000 m in all cases. Figure 5 gives a curve of the Rayleigh number versus the wavenumber (neutral curves). For different values of the Biot number in the figure, we give the critical Rayleigh numbers R_{*} that are the minimum values on the corresponding neutral curves and the critical wavenumbers α_{*} for which the quantities R_{*} are reached. It is evident that as the Biot number decreases, the critical Rayleigh numbers decrease and the region of instability is shifted toward larger wavenumbers.

This work was supported by the Krasnoyarsk Regional Foundation of Science (Grant No. 15G262), the Russian Foundation for Basic Research (Grant No. 05-01-00836-a), and the Integration project of the Siberian Division of the Russian Academy of Sciences No. 2.15.

REFERENCES

1. M. N. Shimaraev and N. G. Granin, "On the problem of stratification and convection mechanism in Baikal," Dokl. Akad. Nauk SSSR, 321, No. 2, 381-385 (1991).
2. M. N. Shimaraev, V. I. Verbolov, N. G. Granin, and P. P. Sherstyankin, Physical Limnology of Lake Baikal: A Review [in Russian], S. n., Irkutsk-Okayama (1994).
3. V. B. Moseenkov, Qualitative Methods for Studying Convection Problems of Viscous Slightly Compressible Liquids [in Russian], Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev (1998).
4. O. B. Bocharov, O. F. Vasil'ev, and T. É. Ovchinnikova, "Approximate equation of state of fresh water near the maximum density temperature," Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 35, No. 4, 556-558 (1999).
5. M. N. Shimaraev, Elements of the Thermal Regime of Lake Baikal [in Russian], Nauka, Novosibirsk (1977).
6. S. K. Godunov, "Numerical solution of boundary-value problems for systems of linear ordinary differential equations," Usp. Mat. Nauk, 16, No. 3, 171-174 (1961).

[^0]: Institute of Computational Modeling, Siberian Division, Russian Academy of Sciences, Krasnoyarsk 660036; andr@icm.krasn.ru; bekezhanova@mail.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 15-22, July-August, 2007. Original article submitted November 8, 2005; revision submitted May 24, 2006.

