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CONVECTIVE INSTABILITY OF A SYSTEM OF HORIZONTAL LAYERS

OF SLIGHTLY COMPRESSIBLE LIQUIDS

UDC 532.51.013.4:536.25V. K. Andreev and V. B. Bekezhanova

The convective stability of a system of two immiscible liquids with close densities is studied. The
densities of the liquids depend nonlinearly on temperature and pressure. It is shown that the state of
mechanical equilibrium is unstable. Neutral curves are plotted, and the critical values of the Rayleigh
number are found. The calculations are performed for physical parameters characteristic of various
northern, central, and southern zones of lake Baikal.
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Introduction. One of the main conditions for deep-water renewal is water temperature and density stratifi-
cations. For deep water bodies (of depth more than 200 m), it is necessary to allow for the compressibility of water.
A feature of lake Baikal, in addition to its depths (a maximum depth of 1637 m; an average depth of 730 m), is a
decrease in the maximum density temperature with increasing depth. This effect is responsible for the mesothermal
temperature maximum and is an important factor in the analysis of transfer processes in the lake due to density
stratification [1].

According to experimental data [1, 2], the temperature profile of lake Baikal water is nonlinear. In the
present study, the coordinate of the salient point of the temperature profile is treated as the coordinate of the
interface between two immiscible liquids. In this case, the nonlinear temperature profile is approximated by two
linear functions which are exact solutions of the energy equation for each of the liquid regions. This interpretation
of the interface taking into account the nonlinear temperature and pressure dependence of the density with small
coefficients of thermal expansion and isothermal compressibility allows the liquid layers to be to considered slightly
compressible media [3].

1. Formulation of the Problem. We consider gravitational thermal convection in a system of two
immiscible liquids with a common interface which are bounded from below by a solid wall and from above by a free
surface (Fig. 1). The x and y axes are in the plane of the lower boundary of the layer, and the z axis is directed
upward. The point z = 0 corresponds to the lower boundary of the layer (solid wall), z = z∗ to the interface,
and z = l to the free surface. The value of z∗ is determined from experimental data [2] as the salient point in the
temperature distribution (for months with a mesothermal temperature distribution, z∗ is the mesothermal maximum
point). The surfaces Γ1

t and Γ2
t are given by the equations f1,2(x, t) = 0, where x = (x, y, z); in particular, for the

case considered below, f1 = z − z∗ and f2 = z − l. The density ρj is expressed as

ρj = ρ0(1 − βj(θj − θ∗j)2). (1)

Here ρ0 is the maximum density reached at the temperature θ0 called the inversion temperature or the temperature
of the thermal-expansion anomaly of the liquid, βj is the thermal-expansion coefficient, θj is the temperature,
θ∗j = θ0(1 − δ0pj), pj is the pressure, and ρ0, θ0, and δ0 are positive constants; the subscript j = 1 refers to the
lower liquid layer and the subscript j = 2 refers to the upper liquid layer. For water, the characteristic value is
ρ0 = 999.972 kg/m3, the inversion temperature is θ0 = 3.98◦C, and δ0 = 5 · 10−8 Pa−1.
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Fig. 1. Flow diagram: Γ1
t is the interface and Γ2

t is the free
surface.

Equation (1) is a simplified version of the equation of state

ρ(θ, p) = ρm(p)[1 − ϕ(p)(θ − θm(p))2].

The form of the functions ρm(p), ϕ(p), and θm(p) and a justification of the choice of this equation of state are
indicated in [4]. Instead of the functions ρm(p) and θm(p), relation (1) contains the zero terms of the Taylor series
expansion ρ0 and θ0, respectively. The constant δ0 is determined from the expression for θm(p). For the specified
values of the physical parameters (for lake Baikal water), the error in determining the density by Eq. (1) is less
than 1%.

In the modeling for lake Baikal, instead of a homogeneous liquid layer we analyze a system of two different
liquids with close physical characteristics (temperature, density, etc.) which correspond to experimental data. The
approach employed in the present study takes into account the seasonal stability features of Baikal water due to
the vertical temperature distribution [1].

For each region Ωj , the Oberbeck–Boussinesq system of equations is valid:

div vj = 0,
∂θj

∂t
+ vj · ∇θj = χjΔθj ,

ρ0

(∂vj

∂t
+ vj∇vj

)
= −∇pj + μjΔvj + ρjg.

(2)

Here vj = (uj , vj , wj) is the velocity of the jth liquid, χj is the thermal diffusivity, μj is the viscosity, and
g = (0, 0,−g), where g is the acceleration due to gravity.

At the solid wall, the temperature and attachment conditions are imposed:

θ1 = Θ1, v1 = 0 at z = 0. (3)

The boundary conditions are as follows:
— at the interface Γ1

t ,

v1 = v2, θ1 = θ2, P1n = P2n,

v1 · n = V 1
n , k1

∂θ1

∂n
= k2

∂θ2

∂n
at z = z∗;

(4)

— at the free surface Γ2
t ,

v2 · n = V 2
n , P2 · n + pg · n = 0,

k2
∂θ2

∂n
+ b(θ2 − θg) = Q at z = l.

(5)
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Fig. 2. Distribution of the equilibrium temperature θe
j in the liquid layers.

Here n is the normal to the surface Γj
t , V j

n is the velocity Γj
t in the normal direction, Pj = −pj + 2μjDj is the

stress tensor in the liquid, Dj is the strain rate tensor of the vector field vj , pg is the gas pressure, kj is the thermal
conductivity of the liquid, b is the interphase heat transfer coefficient, θg is the gas temperature, and Q is the
specified heat flux through the free surface.

2. Equilibrium State. In the state of mechanical equilibrium, ve
j = 0 and the time derivatives are equal

to zero: θe
jt = pe

jt = 0. The energy equation implies that θe
j are linear functions z of the form

θe
j (z) = Ajz + Bj , (6)

where the constants A1 and B1 are determined from the boundary conditions at the interface and the solid wall,
respectively:

A1 = k2A2/k1, B1 = Θ1,

and the constants A2 and B2 are found from the conditions at the free surface and the interface, respectively:

A2 =
Q − bB2 + bθg

k2 + bl
, B2 =

Θ1(k2 + bl) + (Q + bθg)z∗(k2/k1 − 1)
k2 + bl + bz∗(k2/k1 − 1)

.

This temperature distribution in the layers (Fig. 2) is in good agreement with data of full-scale observations at lake
Baikal [2, 5]. (In Fig. 2, Θb is the free-surface temperature.) The complex temperature profile is approximated by
two straight lines θe

1(z) and θe
2(z) in the regions Ω1 and Ω2, respectively.

From the momentum equation, we determine the pressure

pe
1 =

1√|C1|
C3H(z) − 1
C3H(z) + 1

− Dz − E − ρ0gz,

where

C1 =
C

D
, C = ρ0gαθ2

0δ
2
0 , D =

A1 − θ0δ0ρ0g

θ0δ0
, H(z) = exp (2

√
|C1| (Dz + E)),

E =
B1 − θ0

θ0δ0
, C3 =

1 +
√|C1|G

H(z∗)(1 − √|C1|G)
, G = p2(z∗) + Dz∗ + E + ρ0gz∗,

and pressure

pe
2 =

1√|C4|
C5H2(z) − 1
C5H2(z) + 1

− D2z − E2 − ρ0gz,

where

C4 =
C2

D2
, C2 = ρ0gαθ2

0δ
2
0 , D2 =

A2 − θ0δ0ρ0g

θ0δ0
, H2(z) = exp (2

√
|C4| (D2z + E2)),

E2 =
B2 − θ0

θ0δ0
, C5 =

1 +
√|C4|G2

H2(l)(1 − √|C4|G2)
, G2 = pg + D2l + E2 + ρ0gl.
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The profiles of pe
j are convex downward and are nearly linear.

Thus, we obtained a steady-state solution pe
j , θe

j of the boundary-value problems (2)–(5) that corresponds
to the state of mechanical equilibrium ve

j = 0.
3. Problem of Small Perturbations of Equilibrium. We formulate the problem of the stability of me-

chanical equilibrium against small perturbations. For this, we introduce the determining dimensionless parameters.
The width l∗ of the lower layer will be used as the characteristic length scale, the difference Θ = θ1 − θ0 as the
temperature scale, and the velocity of convective rise of a heated fluid particle v∗ =

√
gl∗βΘ2 as the velocity scale.

For the density and pressure, we will use the scales ρ0 and ρ0v
2∗, respectively. The temperature will be reckoned

from the temperature of the lower boundary Θ1, and the pressure from the hydrostatic pressure.
We introduce dimensionless variables ξ = (ξ, η, ζ), τ such that

x = (x, y, z) = ξl∗, t =
l∗
v∗

τ, l∗ =
l

λ
, λ =

Θ1 − Θb

Θ
,

pj = ρ0v
2
∗p

′
j , vj = v∗v′

j , θj = Θθ′j.

Here λ is the inversion parameter, Θb is the free-surface temperature calculated by formula (6) with constant A2

and B2, and p′j , v′j , and θ′j are dimensionless functions of the pressure, velocity, and temperature, respectively.
As the scales for the coefficients ν, χ, and β and the equilibrium temperature gradients A we use their mean

arithmetic values

ν∗ =
ν1 + ν2

2
, χ∗ =

χ1 + χ2

2
, β∗ =

β1 + β2

2
, A∗ =

A1 + A2

2
.

Problem (2)–(5) is determined by the following dimensionless parameters: ε = βΘ2, εT = (θ0δ0ρ0v
2∗)/Θ, R =

2/(μ∗δ∗) is the Rayleigh number, μ∗ = ν∗/(l∗v∗) is the kinematic viscosity parameter (the reciprocal of the Reynolds
number), and δ∗ = χ∗/(l∗v∗) is the Fourier number.

Let vdj(ξ, τ) = vj(ξ, τ) + δ∗Vj(ξ, τ), pdj(ξ, τ) = pj(ξ, τ) + μ∗δ∗Pj(ξ, τ), and θdj(ξ, τ) = θj(ξ, τ) + Tj(ξ, τ),
where Vj = (Uj , Vj , Wj), Pj and Tj are the perturbations, and vj , pj , θj is the main solution. The form of the
functions vd, pd, and θd describing the perturbed motion is chosen to simplify the subsequent transformations.
Linearizing the total problem, for the velocity, temperature, and pressure perturbations in each of the liquids, we
obtain the following boundary-value problem:

Ujξ + Vjη + Wjζ = 0, Tjτ + δ∗h1Wj = δ∗ΔTj,

Ujτ/μ∗ = −Pjξ + ΔUj, Vjτ /μ∗ = −Pjη + ΔVj , (7)

Wjτ /μ∗ = −Pjζ + ΔWj + R(θj − γ + εT pj)Tj + 2(θj − γ + εT pj)εT Pj

(h1 = A∗l∗/Θ and γ = θ0/Θ).
The boundary conditions are as follows:
— at the solid wall,

ζ = 0: U1 = V1 = W1 = 0, T1 = 0; (8)

— at the interface,

ζ = 1: U1 = U2, V1 = V2, W1 = W2, T1 = T2, T1ζ = kT2ζ ,

U1ζ + W1ξ = U2ζ + W2ξ, V1ζ + W1η = V2ζ + W2η = 0, (9)

P1 − P2 + 2(ρ2 − ρ1)(ν2 − ν1)(W2ζ − W1ζ) = [p2ζ − p1ζ − (ρ2 − ρ1)/ε]R1R/2.

Here k = k2/k1, ρj , and νj are the dimensionless relative values of the thermal conductivity, density, and kinematic
viscosity, respectively, and R1 = R1(ξ, η, τ) is the local deviation of the interface from its unperturbed state along
the normal.

The conditions on the free boundary are written as

ζ = λ: −R2τ + δ∗W2 = 0, U2ζ + W2ξ = 0, V2ζ + W2η = 0,

−μ∗δ∗P2 + 2μ∗δ∗W2ζ = h2R2, Θ2ζ + Bi(T2 + h1R2) = 0,
(10)

where h2 = ∂p2/∂ζ, R2 = R2(ξ, η, τ) is the perturbation of the free boundary, and Bi = bl∗/k2 is the Biot number.
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Let us consider normal perturbations proportional to exp [i(α1ξ + α2η − Ct)], where C = Cr + iCi is the
complex decrement and α1 and α2 are the wavenumbers along the x and y axes, respectively. For the amplitudes
of the normal perturbations, we obtain a spectral boundary-value problem to which the Squire transformation
Zj = iα1Uj + iα2Vj applies. After the transformation, system (7) is written as

Zj + W ′
j = 0, −iCTj + δ∗h1Wj = δ∗(T ′′

j − α2Tj),

−iCZj/μ∗ = α2Pj + Z ′′
j − α2Zj , (11)

−iCWj/μ∗ = −P ′
j + W ′′

j − α2Wj + R(θj − γ + εT pj)Tj + 2εT (θj − γ + εT pj)Pj

(α2 = α2
1 + α2

2 is a modified wavenumber).
Boundary conditions (8)–(10) become

ζ = 0: Z1 = 0, W1 = 0, T1 = 0,

ζ = 1: Z1 = Z2, W1 = W2, T1 = T2, R1 = iW1/C,

P1 − P2 + 2(ρ2 − ρ1)(ν2 − ν1)(W ′
2 − W ′

1) = [p′2 − p′1 − (ρ2 − ρ1)/ε]R1R/2,

Z ′
2 − α2W2 = Z ′

1 − α2W1, T ′
2 = kT ′

1, (12)

ζ = λ: −P2 + 2W ′
2 =

R
2

h2
iδ∗
C

W2, Z ′
2 − α2W2 = 0, T ′

2 + Bi
(
T2 + h1

iδ∗
C

W2

)
= 0.

The boundary-value problem (11), (12) is an eigenvalue problem for the complex decrement C. In order that
the equilibrium state pe

j , θe
j be stable against small perturbations of the specified form, it is necessary and sufficient

that the imaginary part C of all eigenvalues Ci be negative.
4. Long-Wave Asymptotics. The unknown functions Zj, Wj , Pj , Tj , and C are represented as follows

(as α → 0):

(Zj , Wj , Pj , Tj , C) = (Zj0, Wj0, Pj0, Tj0, C0) + α(Zj1, Wj1, Pj1, Tj1, C1) + . . . .

Substituting the indicated expansion into system (11), we write the obtained equations in the zero approxi-
mation

Z ′′
j0 = −iC0Zj0/μ∗ (13)

with the boundary conditions

Z10 = 0 at ζ = 0, Z ′
20 = 0 at ζ = λ,

Z10 = Z20, Z ′
10 = Z ′

20 at ζ = 1.
(14)

Multiplying each of Eqs. (13) into the complex conjugate quantity Z∗
j0, integrating over the segment [0, 1] for j = 1

and over the segment [1, λ] for j = 2, and summing the resulting equations, we have
1∫

0

|Z ′
10|2 dζ +

λ∫

1

|Z ′
20|2 dζ =

iC0

μ∗

( 1∫

0

|Z10|2 dζ +

λ∫

1

|Z20|2 dζ
)
.

From this it follows that iC0/μ∗ > 0. Because μ∗ > 0, it follows that iC0 > 0. Therefore, C0 = iCi is a purely
imaginary number and Ci < 0. This implies that long-wave perturbations damp monotonically.

Let us specify the form of C0. We denote iC0/μ∗ = μ. Then, Eq. (13) can be written as

Z ′′
j0 + μZj0 = 0.

Because μ > 0, it follows that Zj0 = cj1 cos
√

μ ζ + cj2 sin
√

μ ζ. In the last expression, the constants cj1 and cj2 are
determined from boundary conditions (14). In this case, c11 = 0, μ = (πn + π/2)2/λ2 (n is a natural number), and

C0 = −iμ∗(πn + π/2)/λ2. (15)
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Fig. 3. Complex decrements Ci(α) calculated for medium depths: 1) northern zone of lake Baikal
(α∗ = 3.91, l∗ = 339 m, and Bi = 0.54); 2) southern zone (α∗ = 9.01, l∗ = 610 m, and Bi = 0.76);
3) central zone (α∗ = 16.6, l∗ = 553 m, and Bi = 0.98).

Fig. 4. Complex decrements Ci(α) calculated for the maximum depths: 1) northern zone of lake Baikal
(α∗ = 12.3, l∗ = 765 m, and Bi = 1.23); 2) southern zone (α∗ = 26.94, l∗ = 1243 m, and Bi = 1.54);
3) central zone (α∗ = 38.61, l∗ = 1387 m, and Bi = 2.47).

5. Numerical Solution.The spectral problem (11), (12) is solved by an orthogonalization method [6]. To
find the eigenvalue C, it is necessary to know the initial approximation C0, which is chosen from condition (15).

We analyzed the stability of a system of horizontal layers of slightly compressible liquids with a common
interface for the following parameter values: θg = 287 K, pg = 101,300 Pa, ν∗ = 1.57 · 10−6 m2/sec, χ∗ =
1.323 · 10−7 m2/sec, β1 = 8.41 · 10−6 K−2, β2 = 8.73 · 10−6 K−2, k1 = 0.556 W/(m ·K), and k2 = 0.562 W/(m ·K).
These values correspond to the parameter values for lake Baikal water. For the indicated values of the physical
parameters, we obtained the dependence of Ci = Im C on the wavenumber α.

The calculations were performed for the medium and maximum depths l of the southern, central, and
northern zones of lake Baikal. The heat fluxes Q characteristic of these zones were taken into account. Figures 3
and 4 show curves of Ci(α) for the medium and maximum depths, respectively, in the southern, central, and northern
zones of lake Baikal (α∗ are the critical wavenumbers). The medium depth l is 810 m in the southern zone, 803 m in
the central zone, and 564 m in the northern zone. The maximum depth is 1443 m in the southern zone of lake Baikal,
1637 m in the central zone, and 990 m in the northern zone. The obtained values of α∗ correspond to the following
dimensional values of the critical wavelength λ = 2π/α∗: for the northern zone of lake Baikal, λ1 = 544.5 m for the
medium depths and λ2 = 390.6 m for the maximum depths: for the central zone, λ1 = 209.01 m and λ2 = 225.6 m,
respectively, and for the southern zone, λ1 = 425.2 m and λ2 = 289.76 m, respectively. An analysis of the results
suggests that the heat transfer has a stabilizing effect on the stability of equilibrium.

Calculations were also conducted for the case of identical thermal-expansion coefficients β1 and β2. The
difference between the results obtained for this case and the results obtained in the present work for β1 �= β2 is
about 10−11 for values of Ci(α) and about 10−2 for values of R(α).

The stability boundary is determined from the relation Ci(R) = 0. Neutral perturbations correspond to the
case Ci = 0. Setting C = 0 in problem (11), (12), we obtain the neutral stability curves. In the calculations, the
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Fig. 5. Neutral curves of R(α): 1) Bi = 0.2, R∗ = 3111.24, and
α∗ = 1.21; 2) Bi = 1, R∗ = 3771.2, and α∗ = 1.8; 3) Bi = 2,
R∗ = 4266.17, and α∗ = 2.1.

values of the Biot number was varied and the value of l was set equal to 1000 m in all cases. Figure 5 gives a curve
of the Rayleigh number versus the wavenumber (neutral curves). For different values of the Biot number in the
figure, we give the critical Rayleigh numbers R∗ that are the minimum values on the corresponding neutral curves
and the critical wavenumbers α∗ for which the quantities R∗ are reached. It is evident that as the Biot number
decreases, the critical Rayleigh numbers decrease and the region of instability is shifted toward larger wavenumbers.
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